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The Functional Equation

Recall that we have the Riemann zeta function defined by

ζ(s) = 1 +
1

s−1
− s

∫ ∞

1

{u}

us+1
du (1)

for Re s > 0. It can be shown that for all s ∈ C it satisfies

Theorem 7.1 Functional Equation for the Riemann zeta function

ζ(s) =
(2π)s

π
Γ(1−s) sin

(πs

2

)

ζ(1−s) . (2)

Here

Definition 7.2 The Gamma function is defined by

Γ(s) =

∫ ∞

0

e−tts−1dt,

for Re s > 0.

Properties 1. Γ(s) is holomorphic in Re s > 0.

The following explanation is not examinable. The integral converges at
t = ∞ for all s ∈ C because of the e−t factor but converges at t = 0 only for
Re s > 0. Given any δ > 0 we have

∣

∣e−tts−1
∣

∣ ≤ e−ttδ−1,

and since
∫ ∞

0

e−ttδ−1dt <∞

we have that the integral defining Γ (s) converges uniformly for all Re s ≥ δ.
Weierstrass’s Theorem for integrals can be shown to apply here, in which
case the holomorphic properties of the integrand as a function of s transfer
to Γ (s), in particular Γ (s) is holomorphic in Re s ≥ δ. True for all δ > 0
means that Γ (s) is holomorphic in Re s > 0.

2. Γ(s) satisfies a Functional Equation,

Γ(s+1) = sΓ(s) , (3)
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which follows on integration by parts.

3. Analytic Continuation. Writing the functional equation as

Γ(s) =
Γ(s+1)

s
,

we see that the right hand side is holomorphic in Re (s+1) > 0, i.e. Re s > −1
except for a simple pole at s = 0. Thus we have an analytic continuation of
Γ(s) to Re s > −1. This can be repeated, i.e.

Γ(s) =
Γ(s+2)

s (s+1)
,

holomorphic for Re s > −2 except for simply poles at s = 0 and s = −1.

Continue, concluding that Γ (s) has an analytic continuation to all of C with
simple poles at s = 0,−1,−2,−3, ... .

4. Important It can be shown that the gamma function is never zero.

Note A particular case of the functional equation is when s = n ∈ N, for
then repeated applications of (3) gives

Γ(n+1) = nΓ(n) = n (n−1) (n−2) ....1Γ(1) .

But

Γ(1) =

∫ ∞

0

e−tdt = 1

so Γ(n+1) = n! Thus the gamma function generalises the factorial function.

Deductions from the Functional Equation

• Definition of ζ (s) for Re s < 1.

If Re s < 1 then Re (s− 1) > 0 and the function

F (s) =
(2π)s

π
Γ(1−s) sin

(πs

2

)

ζ(1−s) ,

is, using (1), well-defined. But what is F?

The functional equation, (2) , says that F (s) = ζ(s) where both F (s) and
ζ(s) are defined, i.e. 0 < Re s < 1. Hence F is the analyic continuation of ζ
from 0 < Re s < 1 to Re s < 1. Along with (1) this means that we have ζ
defined at all points of C.
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• Zeros For Re s < 0 we have Re (1−s) > 1 and we know that the Riemann
zeta function ζ(1−s) on the right hand side of (2) has no zeros for such
s. We are told above that the Gamma function has no zeros. Thus any
zeros of ζ (s) seen on the left hand side of (2) for Re s < 0 arise from the
zeros of sin (πs/2) which occur at the even integers. These zeros of ζ(s) at
−2,−4,−6, ...,−2m, ... are called the trivial zeros of ζ(s). Any other zeros
ρ can only lie in the critical strip 0 ≤ Re ρ ≤ 1 and are called critical zeros.
These critical zeros are normally denoted by ρ = β + iγ.

From the Functional Equation we see that if ρ = β+iγ is a non-trivial
zero then 1−ρ = 1−β−iγ is also a zero. But further

0 = ζ (1−ρ) = ζ (1−β−iγ) = ζ (1−β+iγ),

so 1−β+iγ is also a zero. Thus the non-trivial zeros are symmetric about
both the horizontal line Im s = 0 and the vertical line Re s = 1/2.

Conjecture 7.3 Riemann Hypothesis There are no critical zeros in the

region Re s > 1/2.

The symmetry around the line Re s = 1/2 means that the Riemann Hy-
pothesis is equivalent to claiming that all critical zeros satisfy Re ρ = 1/2.

• Poles We know from (1) that ζ(s) as only one pole in Re s > 0, at s = 1.
Yet from the functional equation it may appear that ζ(s) has poles when
Γ(1−s) has poles. But these are at 1−s = 0,−1,−2,−3, ... , i.e. s = 1, 2, 3, ...
so we get no new poles in Re s ≤ 0.

In fact, the poles of Γ(1−s) at 1 − s = −1,−3,−5, ... , are cancelled by
the seros of sin (πs/2) while the poles at 1−s = −2,−4,−6, ... , are cancelled
by the trivial zeros of ζ(1−s).

Further results on the Riemann zeta function follow from the functional
equation but these rely on properties of the gamma function that we don’t
have time to consider.
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Distribution of critical zeros

In the proof of the Prime Number Theorem we ‘moved a line of integra-
tion’ from [c− iT, c+ iT ] , with c > 1, to [1− δ + iT, 1− δ − iT ] with some
δ = δ(T ) > 0. We could, instead, move the line back to [−R+ iT, −R− iT ]
with arbitrarily large R, independent of T .

Again we apply Cauchy’s Theorem with the contour C, a rectangle with
corners at c − iT, c + iT, −R + iT and −R − iT . This time, though, the
contour will contain poles. So

1

2πi

∫

C

F (s)
xs+1ds

s (s+1)
=

∑

poles in C

Res

(

F (s)
xs+1

s (s+1)

)

,

now a non-empty sum.

As deduced from the Functional Equation ζ(s) may have zeros in 0 ≤
Re s ≤ 1, the critical strip. There are zeros of ζ(s) to the left of σ = 0
but there is no mystery to them, they are simple and lie at s = −2n, n ≥ 1.
Recall that a zero of ζ(s) becomes a simple pole of ζ ′(s) /ζ(s) and thus of
F (s), with residue +1.

Hence, assuming that R > 1,

∑

poles in C

Res

(

F (s)
xs+1

s (s+1)

)

= F (0) x+ F (−1) +
∑

|γ|≤T

xρ+1

ρ (ρ+ 1)

+
∑

n≤R/2

x1−2n

2n (2n− 1)

Subtle point, the horizontal lines of C should not go through a critical zero
of ζ(s) while the vertical line Re s = −R should not go through a trivial zero.

By choosing R = T it can be shown that the first error found by trun-
cating the original integral on the line Re s = c at ±T dominates all others
and thus

∫ x

1

ψ (t) dt =
1

2
x2 −

∑

|γ|≤T

xρ+1

ρ (ρ+ 1)
+O

(

x log9 T

T

)

. (4)

Definition 7.4 Let

N(T ) = |{ρ : ζ(ρ) = 0, 0 < Re ρ < 1, 0 < Im ρ < T}| .
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The first result gives an upper bound on the number of critical zeros.

Lemma 7.5 For T > 0 sufficiently large

N(T+1)−N(T ) ≪ log T. (5)

Proof not given. �

Note this does not actually say there are any non-trivial zeros satisfying
0 < Re ρ < 1, T < Im ρ < T+1. It can, though, be shown though that for T
sufficiently large we have

N(T ) =
T

2π
log

(

T

2π

)

−
T

2π
+O

(

log2 T
)

.

This says quite accurately that there are many critical zeros.

In the sum over zeros in (4) we have |xρ| = xRe ρ. But we have already
noted that the zeros of ζ(s) are symmetric around Re s = 1/2, so half of
them have Re s ≥ 1/2. Thus for such zeros |xρ| ≥ x1/2. In particular, the
sum over zeros will be smallest if all zeros have real part equal to 1/2, the
Riemann Hypothesis.

Corollary 7.6 On the Riemann Hypothesis
∫ x

1

ψ (t) dt =
1

2
x2 +O

(

x3/2
)

. (6)

Proof
∣

∣

∣

∣

∣

∣

∑

|γ|≤T

xρ

ρ (ρ+ 1)

∣

∣

∣

∣

∣

∣

≤
∑

|γ|≤T

xRe ρ

|ρ| |ρ+ 1|
= x1/2

∑

|γ|≤T

1

|ρ| |ρ+ 1|
.

I leave it to the student to use (5) to prove the sum over zeros converges.
Thus the result follows on choosing T = x say, in (4) . �

Unfortunately there is no efficient way to get a result on ψ (t) from the
integrated result in the Corollary.

Fortunately it is possible to prove an un-integrated version of (4) :

Explicit formula Let 2 < T < x. Then

ψ(x) = x−
∑

|Im ρ|≤T

xρ

ρ
+O

(

x log2 x

T

)

. (7)
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Corollary 7.7 Prime Number Theorem with an error term. On the

Riemann Hypothesis

ψ(x) = x+O
(

x1/2 log2 x
)

.

Proof As noted above,

∣

∣

∣

∣

∣

∣

∑

|Im ρ|≤T

xρ

ρ

∣

∣

∣

∣

∣

∣

≤
∑

|Im ρ|≤T

xRe ρ

|ρ|
= x1/2

∑

|Im ρ|≤T

1

|ρ|
.

For this sum, split |Im ρ| ≤ T into the union of n ≤ |Im ρ| < n+1, for n < T .
The first critical zero has imaginary part approximately 14.1347.. so we only
need n ≥ 14 in this sum. Thus

∑

|Im ρ|≤T

1

|ρ|
=

T
∑

n=14

∑

n≤|Im ρ|<n+1

1

|ρ|
≤

T
∑

n=14

1

n

∑

n≤|Im ρ|<n+1

1

=
T
∑

n=14

(N(n+1)−N(n))

n

≪

T
∑

n=14

log n

n
using (5)

≪ log T
T
∑

n=14

1

n
≪ log2 T.

Combining

ψ(x) = x+O
(

x1/2 log2 T
)

+O

(

x log2 x

T

)

.

Simply choose T as a large power of x, i.e. x100, to get the stated result. �

6


