Chapter 7 Actual & Conjectured results on the zeros of ((s)
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The Functional Equation
Recall that we have the Riemann zeta function defined by
1 = {u}
C(s)zl—l—s_l—s/l ustu (1)

for Res > 0. It can be shown that for all s € C it satisfies

Theorem 7.1 Functional Equation for the Riemann zeta function

(27)°

(s) = L p(1—s)sin (?) C(1—s). 2)

Here

Definition 7.2 The Gamma function is defined by

['(s) = / e 't tdt,
0
for Res > 0.

Properties 1. I'(s) is holomorphic in Res > 0.

The following explanation is not examinable. The integral converges at
t = oo for all s € C because of the e~ factor but converges at ¢t = 0 only for
Res > 0. Given any 6 > 0 we have

‘e—tts—l‘ S €_tt6_1,

o0
/ e O dt < 0o
0

and since

we have that the integral defining I' (s) converges uniformly for all Res > 4.
Weierstrass’s Theorem for integrals can be shown to apply here, in which
case the holomorphic properties of the integrand as a function of s transfer
to I' (s), in particular I' (s) is holomorphic in Res > ¢. True for all § > 0
means that I"(s) is holomorphic in Res > 0.

2. T'(s) satisfies a Functional Equation,
I(s+1) = sI'(s), (3)

1



which follows on integration by parts.

3. Analytic Continuation. Writing the functional equation as

we see that the right hand side is holomorphic in Re (s+1) > 0,1i.e. Res > —1
except for a simple pole at s = 0. Thus we have an analytic continuation of
I'(s) to Res > —1. This can be repeated, i.e.

I'(s+2)
[(s)=——+=
(s) = 5+1)
holomorphic for Res > —2 except for simply poles at s = 0 and s = —1.

Continue, concluding that I' (s) has an analytic continuation to all of C with
simple poles at s =0,—-1,—-2, -3, ... .

4. Important It can be shown that the gamma function is never zero.

Note A particular case of the functional equation is when s = n € N, for
then repeated applications of (3) gives

I'(n+1) =nl'(n) =n(n—1) (n—2)...1I'(1).

I'(1) :/ e tdt =1
0
so I'(n+1) = n! Thus the gamma function generalises the factorial function.

Deductions from the Functional Equation
e Definition of ((s) for Res < 1.
If Res < 1 then Re (s — 1) > 0 and the function

F(s) = Zr(1—s) sin () c1-s),

s

is, using (1), well-defined. But what is F'?

The functional equation, (2), says that F'(s) = ((s) where both F'(s) and
((s) are defined, i.e. 0 < Res < 1. Hence F is the analyic continuation of ¢
from 0 < Res < 1 to Res < 1. Along with (1) this means that we have ¢
defined at all points of C.



e Zeros For Res < 0 we have Re (1—s) > 1 and we know that the Riemann
zeta function ((1—s) on the right hand side of (2) has no zeros for such
s. We are told above that the Gamma function has no zeros. Thus any
zeros of ( (s) seen on the left hand side of (2) for Res < 0 arise from the
zeros of sin (mws/2) which occur at the even integers. These zeros of ((s) at
—2,—4,—06,...,—2m, ... are called the trivial zeros of ((s). Any other zeros
p can only lie in the critical strip 0 < Rep < 1 and are called critical zeros.
These critical zeros are normally denoted by p = 8 + i7.

From the Functional Equation we see that if p = f+iv is a non-trivial
zero then 1—p = 1—F—iv is also a zero. But further

0=((1—p) =C(1-B—in) = C(1-F+i),

so 1—pF+iv is also a zero. Thus the non-trivial zeros are symmetric about
both the horizontal line Im s = 0 and the vertical line Res = 1/2.

Conjecture 7.3 Riemann Hypothesis There are no critical zeros in the
region Res > 1/2.

The symmetry around the line Re s = 1/2 means that the Riemann Hy-
pothesis is equivalent to claiming that all critical zeros satisfy Rep = 1/2.

e Poles We know from (1) that ((s) as only one pole in Res > 0, at s = 1.
Yet from the functional equation it may appear that ((s) has poles when
I'(1—s) has poles. But these areat 1—s = 0,—1,—2,-3,... ,i.e. s =1,23, ...
so we get no new poles in Res < 0.

In fact, the poles of T'(1—s) at 1 — s = —1,—3, =5, ... , are cancelled by
the seros of sin (7s/2) while the poles at 1 —s = —2, —4, —6, ... , are cancelled
by the trivial zeros of {(1—s).

Further results on the Riemann zeta function follow from the functional
equation but these rely on properties of the gamma function that we don’t
have time to consider.



Distribution of critical zeros

In the proof of the Prime Number Theorem we ‘moved a line of integra-
tion’ from [¢ — i1, c+ T, with ¢ > 1, to [l — § + 4T, 1 — § — ¢T'] with some
0 =0(T) > 0. We could, instead, move the line back to [-R 4 iT, —R — iT
with arbitrarily large R, independent of T

Again we apply Cauchy’s Theorem with the contour C, a rectangle with
corners at ¢ — i1, ¢ + T, —R + ¢T" and —R — iT". This time, though, the
contour will contain poles. So

1 51 dg L5+l
2mi CF(S) s(s+1) - Z Hes (F(S) 5(5+1)> '

poles in C

now a non-empty sum.

As deduced from the Functional Equation ((s) may have zeros in 0 <
Res < 1, the eritical strip. There are zeros of ((s) to the left of ¢ = 0
but there is no mystery to them, they are simple and lie at s = —2n, n > 1.
Recall that a zero of ((s) becomes a simple pole of ('(s) /¢(s) and thus of
F(s), with residue +1.

Hence, assuming that R > 1,

2 (o) = o 30
+ D m@n—1)

n<R/2

Subtle point, the horizontal lines of C should not go through a critical zero
of ¢(s) while the vertical line Re s = — R should not go through a trivial zero.

By choosing R = T' it can be shown that the first error found by trun-
cating the original integral on the line Res = ¢ at £7" dominates all others
and thus

/jqp(t)dt:;ﬁ—Z%+O($IO§9T). (4)

[v|<T
Definition 7.4 Let

N({T)=H{p:¢(p) =0,0<Rep<1,0<Imp<T}.



The first result gives an upper bound on the number of critical zeros.
Lemma 7.5 For T > 0 sufficiently large
N(T+1) - N(T) < logT. (5)

Proof not given. |

Note this does not actually say there are any non-trivial zeros satisfying
0<Rep< 1, T <Imp < T+1. It can, though, be shown though that for 7'
sufficiently large we have

T T T )
N(T) = 5 lo g<2ﬂ> —%+O(log T).

This says quite accurately that there are many critical zeros.

In the sum over zeros in (4) we have |2”| = zR°?. But we have already
noted that the zeros of ((s) are symmetric around Res = 1/2, so half of
them have Res > 1/2. Thus for such zeros |2°| > x'/2. In particular, the
sum over zeros will be smallest if all zeros have real part equal to 1/2, the
Riemann Hypothesis.

Corollary 7.6 On the Riemann Hypothesis

/lx O (t)dt = %IQ +0 (2%?). (6)

Proof

212
Z Z lollp+ 1] |p+ Z Iollp+ 1] |p+1|

|y \<T v|<T |v|<T

I leave it to the student to use (5) to prove the sum over zeros converges.
Thus the result follows on choosing T' = x say, in (4) . [

Unfortunately there is no efficient way to get a result on ¢ (¢) from the
integrated result in the Corollary.

Fortunately it is possible to prove an un-integrated version of (4) :

Explicit formula Let 2 < T < 2. Then

by =z— 3 5‘;’)+0<”}1‘)T’g2””). (7)




Corollary 7.7 Prime Number Theorem with an error term. On the
Riemann Hypothesis

v(x)=x+ 0(951/2 log” z) .
Proof As noted above,

Rep

z? Y i
2 L= 2 =t

mp<r P | mpi<r [Tm pI<T

For this sum, split |Im p| < 7" into the union of n < [Imp| < n+1, forn < T.
The first critical zero has imaginary part approximately 14.1347.. so we only
need n > 14 in this sum. Thus

SRTIE S S ED S DO

|Im p|<T ‘P’ n=14 n<|Im p|<n+1 n=14 = n<|Im p|<n+1
T
_ 5 (V) - NG
n=14 n
4 logn
< .
Z —— using (5)
n=14
1
< logT» - <log’T.
n
n=14
Combining

2
U(z) =+ 0(961/2 log® T') +O(xlog x) :

Simply choose T as a large power of z, i.e. 2!%, to get the stated result. W



